职称:副研究员
研究方向:视觉检测,智能化机器人传感技术,工业信息检测,机器人焊接智能化
办公室:电院1-130
办公电话:021-34205931
电子邮箱:nana414526@sjtu.edu.cn
招生情况:硕士生导师
个人介绍
上海交通大学材料加工专业机器人焊接智能化方向博士学位,致力于智能制造多信息传感技术及工业多信息在线质量监控、智能化焊接机器人系统优化、多信息感知的生物医学传感技术研究,研究成果应用于航天、船舶以及生物医疗领域。先后主持参与科研项目20余项,主持包括国家自然科学基金面上项目、国家自然科学基金青年基金、国家科技部机器人智能专项子课题、国家博士后面上项目及特别资助等,在国内外学术刊物和国际国内重要会议上发表论文30余篇,出版英文论著1部。受聘于Springer旗下创办刊物 Transactions on Intelligent Welding Manufacturing作为Academic Assistant Editor,以及作为上海交通大学学报英文版-医工交叉类的学术论文编辑。
教育及科研经历
2016.04-2018.04 上海交通大学电子信息与电气工程学院 仪器科学与技术系(信息处理方向) 副研究员
2016.04-2018.04 上海交通大学电子信息与电气工程学院 仪器科学与技术系(信息处理方向) 助理研究员
2016.04-2018.04 上海交通大学船舶海洋与建筑工程学院 船舶与海洋工程系(船舶智造信息处理) 博 士 后
2014.03-2016.03 上海交通大学电子信息与电气工程学院 仪器科学与技术系(信息处理方向) 博 士 后
2014.03-2015.09 University of Western Sydney(澳大利亚) Robots and Mechatronics Postdoctor
2009.09-2014.03 上海交通大学材料学院 材料加工工程(机器人焊接智能化方向) 博 士
2006.09-2009.07 西安理工大学材料学院 材料加工工程(先进材料焊接工艺方向) 硕 士
2002.09-2006.07 西安理工大学材料学院 材料成型及控制工程(材料制造方向) 学 士
研究方向
(1)智能制造多信息传感技术,视觉、声音、光谱等信号处理技术研究
(2)基于状态数据工业在线质量监控的研究
(3)多信息感知的生物医学传感技术研究
代表性科研项目
1. 国家自然科学基金面上项目:“基于听觉注意机制的脉冲MIG焊接动态过程及缺陷特征研究”,起止年月:2020.01-2023.12。
2. 国家自然科学基金青年基金项目:“基于电弧声信号的铝合金脉冲GTAW焊熔透识别及焊接缺陷预测方法研究”,起止年月:2015.01-2017.12。
3. 国家级科技部重点研发计划项目子课题:“语义级高精度地图构建与增量更新”,起止年月:2019.05-2022.04。
4. 中国博士后基金面上项目:“铝合金GTAW焊接气孔缺陷形成多信息融合预测及其在线抑制研究“,起止年月:2016.10-2018.10。
5. 中国博士后基金特别资助项目: “基于传声器阵列脉冲GTAW焊熔透控制及缺陷预测研究“, 起止年月:2017.04-2019.04。
6. 地方其他省市科技厅创新与成果转化项目: “船舶焊接智能制造过程及质量多信息监控系统分析仪研制“, 起止年月:2017.04-2019.04。
7. 青年人才科研能力培育专项新进青年教师启动计划项目: “基于数据驱动型多信息融合技术的脉冲GTAW焊接过程质量实时监控研究“, 起止年月:2018.05-2021.12。
8. 综合交叉研究与培育专项医工交叉基金项目: “基于近红外光谱的脑卒中患者四肢康复训练系统关键技术研究 +子课题“,起止年月:2020.01-2022.12。
9. 企业高校合作预研项目: “采茶机器人的自然光图像识别与网络通讯技术研究“,起止年月:2019.09-2020.09。
10. 澳大利亚国家科学研究基金项目(ARC):“A Vision Controlled Autonomous Multi-Robot Welding System”。起止年月:2014.03-2015.10。(项目主要骨干执行人)
11. 上海交通大学“转化医学交叉研究基金”:“J-Scope视频喉镜辅助下采用ETCO2智能感知与视觉双重引导一体化插管新技术的研发和应用”。起止年月:2019.01-2021.12。(项目主要骨干执行人)
12. 上海市科学技术委员会科研项目:“基于PETCO2感知的气管插管一体化智能装置的研发”。起止年月:2018.04-2021.06。(项目主要骨干执行人)
13. 国家自然科学基金项目:“智能化焊接机器人混杂系统特征的MLD建模和控制研究”,起止年月: 2014.1—2017.12,(项目主要骨干执行人)
14. 国家自然科学基金面上项目:“铝合金变极性等离子弧焊穿孔熔池多源信息智能表征及焊缝成形控制策略研究“,起止年月:2013.01-2016.12,(项目主要骨干执行人)
15. 国家发改委、工信部联合智能制造装备发展专项:“海上钻井平台装备制造智能化焊接车间”,起止年月:2012.12-2015.12,(项目主要骨干执行人)
代表性论文
[1]. Lv, N., Xu, Y. L., Li, S. C., & Chen, S. B. (2017, December). Automated control of welding penetration based on audio sensing technology, Journal of Materials Processing Technology, 2017, 250, 81-98.
[2]. Lv, N., Fang, G., Zhao, H., Chen, S., & Zou, J. (2016). Real-time monitoring of welding path in pulse metal-inert gas robotic welding using a dual-microphone array. The International Journal of Advanced Manufacturing Technology, 2016,1-14.
[3]. Lv, N., Zhong, J., Chen, H., Lin, T., & Chen, S. (2014). Real-time control of welding penetration during robotic GTAW dynamical process by audio sensing of arc length. The International Journal of Advanced Manufacturing Technology, 74(1-4), 235-249.
[4]. Lv, N., Xu, Y., Zhang, Z., Wang, J., Chen, B., & Chen, S. (2013). Audio sensing and modeling of arc dynamic characteristic during pulsed Al alloy GTAW process. Sensor Review, 33(2), 141-156.
[5]. Lv, N., Xu, Y., Zhong, J., Chen, H., Wang, J., & Chen, S. (2013). Research on detection of welding penetration state during robotic GTAW process based on audible arc sound. Industrial Robot: An International Journal, 40(5), 474-493.
[6]. Lv, N., Zhong, J., Wang, J., & Chen, S. (2014). Automatic measuring and processing system of audio sensing for real-time arc height control of pulsed GTAW. Sensor Review, 34(1), 51-66.
[7]. Yanling Xu, Na Lv, Gu Fang, Shaofeng Du, Wenjun Zhao, Zhen Ye, Shanben Chen. Welding seam tracking in robotic gas metal arc welding, Journal of Materials Processing Technology, 248: 18-30.
[8]. Chao Chen, Gu Fang, Yanling Xu, Na Lv, Dinham Mitchell, Autonomous welding seam detecting and tracking using vision and sound sensors in robotic gas metal arc welding,International Symposium on Robotics & Mechatronics 2017 (ISRM),no.16(2017)
[9]. Chao Chen, Na Lv, Shanben Chen. Welding Penetration Monitoring for Pulsed GTAW Using Visual Sensor Based on AAM and Random Forests.[J]. Journal of Manufacturing Processes.
[10]. Lv, N., Xu, Y. L., Fang, G., Zhao, H., & Chen, S. B. (2015). Mechanism Analysis and Feature Extraction of Arc Sound Channel for Pulse GTAW Welding Dynamic Process. Robotic Welding, Intelligence and Automation. Springer International Publishing.
[11]. Lv, N., Xu, Y. L., Fang, G., Yu, X. W., & Chen, S. B. (2016, July). Research on welding penetration state recognition based on BP-Adaboost model for pulse GTAW welding dynamic process. In Advanced Robotics and its Social Impacts (ARSO), 2016 IEEE Workshop on (pp. 100-105). IEEE.
[12]. Na, L., Ji-yong, Z., Hua-bin, C., Shan-ben, C., & Ji-feng, W. (2013, May). Penetration feature extraction and modeling of arc sound signal in GTAW based on wavelet analysis and hidden Markov model. In Industrial Electronics (ISIE), 2013 IEEE International Symposium on (pp. 1-6). IEEE.
[13]. Lv, N., & Chen, S. (2011). Investigation on acoustic signals for on-line monitoring of welding. In Robotic Welding, Intelligence and Automation (pp. 235-243). Springer Berlin Heidelberg.
[14]. Chen, S. B., & Lv, N. (2014). Research evolution on intelligentized technologies for arc welding process. Journal of Manufacturing Processes,16(1), 109-122.
[15]. Xu, Y., Lv, N., Han, Y., & Chen, S. (2016, July). Research on the key technology of vision sensor in robotic welding. In Advanced Robotics and its Social Impacts (ARSO), 2016 IEEE Workshop on (pp. 121-125). IEEE.
[16]. Chao Chen, Na Lv, Shanben Chen, Data-driven Welding Expert System structure Based on Internet of Things, Transactions on Intelligent Welding Manufacturing(TIWM), no.50(2017)
[17]. Xu, Y., Lv, N., Fang, G., Lin, T., Chen, H., Chen, S., & Han, Y. (2015). Sensing Technology for Intelligentized Robotic Welding in Arc Welding Processes. In Robotic Welding, Intelligence and Automation (pp. 411-423). Springer International Publishing.
[18]. Zhang, H. H., Lv, N., & Chen, S. B. (2015). Study on the Relationship Between the Energy in Most Effective Frequency Range of Arc Sound Signal and the Change of Arc Height in Pulsed Al Alloy GTAW Process. In Robotic Welding, Intelligence and Automation (pp. 385-399). Springer International Publishing.
[19]. Chen, S. B., & Lv, N. (2013). Research evolution on intelligentized robotic welding technologies. Dianhanji/ Electric Welding Machine, 43(5), 28-36.
[20]. 余博, 吕娜, 方谷, & 陈善本. (2016). 基于双麦克风阵列时间延迟的脉冲惰性气体保护焊焊缝偏差预测. 上海交通大学学报, 50(10), 1578-1582.
[21]. Xu, Y., Lv, N., Zhong, J., Chen, H., & Chen, S. (2012). Research on the real-time tracking information of three-dimension welding seam in robotic GTAW process based on composite sensor technology. Journal of Intelligent & Robotic Systems, 68(2), 89-103.
[22]. Huang Y, Wu D, Lv N, et al. Investigation of porosity in pulsed GTAW of aluminum alloys based on spectral and X-ray image analyses[J]. Journal of Materials Processing Technology, 2017, 243: 365-373.
[23]. Yu, H., Xu, Y., Lv, N., Chen, H., & Chen, S. (2013). Arc spectral processing technique with its application to wire feed monitoring in Al–Mg alloy pulsed gas tungsten arc welding. Journal of Materials Processing Technology,213(5), 707-716.
[24]. Zhang, Z., Yu, H., Lv, N., & Chen, S. (2013). Real-time defect detection in pulsed GTAW of Al alloys through on-line spectroscopy. Journal of Materials Processing Technology, 213(7), 1146-1156.